Data collection: CAD-4 Manual (Enraf-Nonius, 1988). Cell refinement: CELDIM (Enraf-Nonius, 1988). Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: MULTAN80 (Main et al., 1980). Program(s) used to refine structure: MolEN. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: PARST (Nardelli, 1983).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1253). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
- Carugo, O., Charalambous, J., Raghvani, D. V. & Sardone, N. (1996). Acta Cryst. C52, 153-155.
- Enraf-Nonius (1988). CAD-4 Manual. Version 5.0. Enraf-Nonius. Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York. England, and Louvain, Belgium.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

termined at 130 K are reported. The Calkyl-Oester bond distances of 1.487(2) and 1.492(2) Å are not significantly different from one another. The geometry of the sulfonate function with respect to both the phenyl and cyclohexane rings is essentially identical in both structures.

Comment

As part of our structural studies on the factors influencing C-O bond distances (White & Robertson, 1992; White, Green & Kuan, 1995), we required accurate C-O bond distances for axial and equatorial cyclohexyl p-nitrobenzenesulphonate esters for comparison purposes. The conformationally constrained cyclohexyl nosylates, trans-4-tert-butylcyclohexyl pnitrobenzenesulfonate, (1), and cis-4-tert-butylcyclohexyl p-nitrobenzenesulfonate, (2), were chosen for this low-temperature study.

Compound (1) was prepared by esterification of commercially available trans-4-tert-butylcyclohexanol, (3), with *p*-nitrobenzenesulfonyl chloride in pyridine, and (2) was prepared by selective reduction of 4-tertbutylcyclohexanone, (4), with L-selectride giving cis-4tert-butylcyclohexanol, (5), as the major product, which was similarly esterified using *p*-nitrobenzenesulfonyl chloride in pyridine.

cis- and trans-4-tert-Butylcyclohexyl p-Nitrobenzenesulfonate at 130 K

JONATHAN M. WHITE, JOSY GIORDANO AND ALISON J. GREEN

School of Chemistry, University of Melbourne, Parkville, Vic 3052, Australia. E-mail: jonathan_white@muwayf. unimelb.edu.au

(Received 19 April 1996; accepted 24 July 1996)

Abstract

The structures of the title axial and equatorial cyclohexyl p-nitrobenzenesulfonate esters, C16H23NO5S, de- for (1) and (2), respectively, do not differ significantly

© 1996 International Union of Crystallography Printed in Great Britain - all rights reserved

The C1—O1 distances of 1.487(2) and 1.492(2) Å

Acta Crystallographica Section C ISSN 0108-2701 © 1996 from one another. The geometry about the sulfonate ester function is essentially identical in both structures; the S—O2 bond is close to being eclipsed with the aromatic ring, the S—O3 and S—O1 bonds are approximately equally above and below the plane of the phenyl ring, and the O3—S—O1 bond angle is bisected by the C11—C16 bond. Furthermore, the geometrical relationship of the sulfonate ester with respect to the C1, C2 and C3 atoms of the cyclohexane ring, as defined by the dihedral angles about the C1—O1 and O1—S bonds, is very similar for both structures.

Fig. 1. ORTEPII (Johnson, 1976) diagram of (1). Displacement ellipsoids are at the 50% probability level and H atoms have been omitted.

Fig. 2. ORTEPII (Johnson, 1976) diagram of (2). Displacement ellipsoids are at the 50% probability level and H atoms have been omitted.

Experimental

Rock-like crystals of (1) (m.p. 363–364 K) were grown from methanol, while plate-like crystals of (2) (m.p. 382–383 K) were grown from petroleum. The temperature of the crystals was maintained at 130 K during data collection using an Oxford Cryostream cooling device.

Compound (1) (trans)

```
Crystal data
```

```
C<sub>16</sub>H<sub>23</sub>NO<sub>5</sub>S

M_r = 341.43

Monoclinic

P2_1/c

a = 12.603 (3) Å

b = 9.5200 (10) Å

c = 14.762 (5) Å

\beta = 107.81 (2)^\circ

V = 1686.2 (7) Å^3

Z = 4

D_x = 1.345 \text{ Mg m}^{-3}

D_m \text{ not measured}
```

Data collection

Enraf–Nonius CAD-4-Machs	$R_{\rm int} = 0.0152$
diffractometer	$\theta_{\rm max} = 29.96^{\circ}$
$\omega/2\theta$ scans	$h = -17 \rightarrow 16$
Absorption correction:	$k = -13 \rightarrow 12$
none	$l = -15 \rightarrow 20$
5083 measured reflections	3 standard reflections
4298 independent reflections	frequency: 160 min
3738 observed reflections	intensity decay: none
$[I > 2\sigma(I)]$	

Refinement

S

Ν

01 02

O3 O4 O5 C1

C2 C3 C4 C5

C6 C7

C8

C9

C10

C11

C12

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.005$
R(F) = 0.0379	$\Delta \rho_{\rm max} = 0.580 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.1064$	$\Delta \rho_{\rm min}$ = -0.280 e Å ⁻³
S = 1.041	Extinction correction:
4297 reflections	SHELXL93 (Sheldrick,
301 parameters	1993)
H-atom coordinates and	Extinction coefficient:
isotropic displacement	0.0009 (8)
parameters refined	Atomic scattering factors
$w = 1/[\sigma^2(F_a^2) + (0.0562P)^2]$	from International Tables
+ 0.7912 <i>P</i> 1	for Crystallography (1992,
where $P = (F_c^2 + 2F_c^2)/3$	Vol. C, Tables 4.2.6.8 and
	6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (1)

$U_{\text{eq}} = (1/3) \sum_{i} \sum_{j} U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

x	у	z	U_{eq}
0.01521 (3)	0.07762 (3)	0.69143 (2)	0.02231 (10)
0.24175 (10)	0.15447(13)	1.10649 (8)	0.0273 (3)
0.05930 (8)	-0.06790 (10)	0.67025 (7)	0.0245 (2)
0.04891 (9)	0.18726(10)	0.64000 (7)	0.0271 (2)
-0.10058 (9)	0.05557 (12)	0.67847 (8)	0.0305 (2)
0.22089(11)	0.06932(12)	1.16072 (8)	0.0361 (3)
0.30432 (11)	0.25483 (13)	1.13208 (8)	0.0411 (3)
0.17520(11)	-0.07504 (13)	0.66514 (10)	0.0214 (3)
0.22770 (13)	-0.20570 (15)	0.71820(10)	0.0255 (3)
0.34521 (12)	-0.2248 (2)	0.70980 (10)	0.0251 (3)
0.34479(11)	-0.23086(13)	0.60629 (9)	0.0214 (3)
0.28661 (12)	-0.0994 (2)	0.55342 (10)	0.0263 (3)
0.16938 (12)	-0.0809 (2)	0.56145 (10)	0.0259 (3)
0.46166(12)	-0.25428 (14)	0.59438 (10)	0.0248 (3)
0.4502 (2)	-0.2793 (2)	0.48906 (12)	0.0364 (4)
0.53932 (13)	-0.1284 (2)	0.63037 (13)	0.0321 (3)
0.51647(14)	-0.3848 (2)	0.65012 (12)	0.0329 (3)
0.08530(11)	0.10156 (13)	0.81398 (9)	0.0211 (3)
0.15278 (12)	0.21783 (14)	0.84457 (10)	0.0238(3)

Mo $K\alpha$ radiation

 $\mu = 0.216 \text{ mm}^{-1}$

T = 130.0(1) K

 $0.4\,\times\,0.4\,\times\,0.3$ mm

Cell parameters from 25 reflections

 $\lambda = 0.71069 \text{ Å}$

 $\theta = 12 - 16^{\circ}$

Block

Colourless

C13 C14 C15 C16	0.20440 (12) 0.18724 (11) 0.12088 (12) 0.06844 (12)	0.23575 (0.13626 (0.01873 (0.00178 ((14) 0.94176 (10) (14) 1.00351 (9) (15) 0.97358 (10) (15) 0.87712 (10)	0.0245 (3) 0.0223 (3) 0.0254 (3) 0.0256 (3)	Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (2)					
Table	e 2. Selecte	d geometri	c parameters (Å.	°) for (1)		U,	$eq = (1/3) \Delta_i$	∠ _j U _{ij} a	$a_j^* a_i \cdot a_j$.	
S—03 S—02 S—01		1.4281 (11) 1.4295 (11) 1.5595 (10)	S-CII 0I-CI	1.7684 (15) 1.487 (2)	S N O1 O2	x 0.30538 (7) 1.1037 (3) 0.3665 (2) 0.1802 (3)	y 0.07115 0.1291 (; 0.0054 (; 0.0256 (;	(5) 2) 2) 2)	z 0.85303 (3) 1.09847 (14) 0.75672 (11) 0.89913 (12)	U_{eq} 0.0241 (2) 0.0298 (4) 0.0254 (3) 0.0320 (4)
03—S—(03—S—(02—S—(03—S—(02—S—(02 01 01 01 01	119.58 (7) 104.75 (6) 111.11 (6) 109.04 (7) 108 22 (7)	01—S—C11 C1—O1—S O1—C1—C2 O1—C1—C6	102.85 (6) 117.81 (8) 107.01 (11) 108.00 (11)	03 04 05 C1	0.2338 (3) 1.2159 (3) 1.1480 (3) 0.4159 (4)	0.2114 (2 0.2257 (2 0.0389 (2 -0.1504 (2	2) 2) 2) 2) 2)	0.82619 (12) 1.07889 (14) 1.16194 (13) 0.75420 (15)	0.0323 (4) 0.0323 (4) 0.0413 (4) 0.0435 (5) 0.0265 (4)
03	01—C1 01—C1 -01—C1 C1—C2 C1—C6 -C2—C3	172.00 (9) 41.54 (11) -74.05 (10) 136.90 (10) -102.47 (11) 176.14 (11)	03—S—C11—C12 02—S—C11—C12 01—S—C11—C12 03—S—C11—C12 02—S—C11—C16 01—S—C11—C16	-127.52 (11) 4.03 (13) 121.68 (11) 51.40 (12) -177.05 (10) -59.40 (12)	C2 C3 C4 C5 C6 C7 C8	0.5895 (3) 0.5268 (3) 0.3382 (3) 0.1656 (3) 0.2276 (4) 0.2711 (4) 0.1193 (4)	-0.1600 () -0.1124 () -0.1924 () -0.1778 () -0.2283 () -0.1477 () -0.2577 ()	3) 3) 2) 2) 2) 2) 3)	0.6921 (2) 0.5869 (2) 0.53878 (15) 0.6035 (2) 0.7079 (2) 0.43095 (15) 0.3824 (2)	0.0297 (5) 0.0279 (4) 0.0240 (4) 0.0260 (4) 0.0289 (5) 0.0263 (4) 0.0374 (5)
Compound (2) (<i>cis</i>) Crystal data			- 39.40 (12)	C9 C10 C11 C12 C13	0.4563 (4) 0.1706 (4) 0.5397 (3) 0.5792 (4)	-0.1440 (2 -0.0001 (2 0.0888 (2 0.0058 (2	3) 3) 2) 2)	0.3824 (2) 0.3731 (2) 0.4242 (2) 0.92774 (13) 1.0112 (2)	0.0374 (3) 0.0358 (5) 0.0224 (4) 0.0270 (4)	
$C_{16}H_{23}N$ $M_r = 34$ Monocl $P2_1$	NO5S 41.43 inic		Cu $K\alpha$ (nickel fi radiation $\lambda = 1.5418$ Å Cell parameters	ltered)	C14 C15 C16	0.7030 (4) 0.9014 (3) 0.8630 (4) 0.6800 (4)	0.0201 (2 0.1183 (2 0.2044 (2 0.1887 (2	2) 2) 2) 2)	1.0687 (2) 1.04093 (14) 0.9592 (2) 0.9011 (2)	0.0273 (4) 0.0235 (4) 0.0274 (4) 0.0273 (4)
a = 6.612 (2) Å b = 9.333 (2) Å		reflections $A = 20 \pm 35^{\circ}$		Tab	Table 4. Selected geometric parameters (Å, °) for			°) for (2)		
c = 13.819 (3) Å $\beta = 96.72 (3)^{\circ}$ $V = 846.8 (4) \text{ Å}^{3}$ Z = 2 $D_{x} = 1.339 \text{ Mg m}^{-3}$ $D_{m} \text{ not measured}$		$\mu = 1.917 \text{ mm}^{-1}$ T = 130.0 (1) K Plate $0.49 \times 0.24 \times 0.04 \text{ mm}$ Colourless		S—01 S—02 S—03		1.561 (2) 1.425 (2) 1.426 (2)	S—C 01—(11 C1	1.766 (2) 1.492 (2)	
				02S03 02S01 03S01 02SC11 03SC11		120.37 (11) O1—S—C11 110.74 (9) C1—O1—S 104.50 (9) O1—C1—C6 108.28 (10) O1—C1—C2 107.93 (10)		S—C11 D1—S C1—C6 C1—C2	103.78 (9) 118.84 (13) 107.8 (2) 104.6 (2)	
Data collection Enraf–Nonius CAD-4-Machs diffractometer ω/2θ scans Absorption correction:		3314 observed reflections $[I > 2\sigma(I)]$ $R_{int} = 0.0545$ $\theta_{max} = 74.82^{\circ}$		02—S- 03—S- C11—S- S—O1- S—O1- O1—C1	01C1 01C1 C1C6 C1C2 C2C3	- 38.8 (2) - 169.9 (2) 77.1 (2) 98.2 (2) - 142.62 (14) - 63.9 (2)	02—9 03—9 01—9 02—9 03—9 01—9	5-C11-C12 5-C11-C12 5-C11-C12 5-C11-C12 5-C11-C16 5-C11-C16 5-C11-C16	4.8 (2) 136.6 (2) -112.9 (2) -174.4 (2) -42.6 (2) 67.9 (2)	
Gaussian (SHELX76; Sheldrick, 1976) $T_{min} = 0.57$, $T_{max} = 0.93$ 3814 measured reflections 3409 independent reflections		$h = -7 \rightarrow 8$ $k = -11 \rightarrow 11$ $l = -1 \rightarrow 17$ 3 standard reflections frequency: 160 min intensity decay: 25%		The structures were both solved by direct methods using SHELXS86 (Sheldrick, 1985). Refinement was performed using SHELXL93 (Sheldrick, 1993) with anisotropic displacement parameters for all non-H atoms and isotropic displacement parameters for H atoms. The figures were drawn using ORTEPII (Johnson 1076) and therefore						
Refinem	ent		intensity decay	. 2.370	<i>SHEL</i> 4000V	<i>XL</i> 93. All calc <i>LC</i> computer	culations we	and tr	ied out on a	vAXstation
Refinement on F^2 Δ $R(F) = 0.0408$ Δ $wR(F^2) = 0.1755$ E: $S = 0.837$ 3379 reflections 301 parameters B H-atom coordinates andisotropic displacement Ai parameters refined $w = 1/[\sigma^2(F_o^2) + (0.1293P)^2 + 0.1708P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.157$ All		$\Delta \rho_{\text{max}} = 0.428 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.644 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL93 (Sheldrick, 1993) Extinction coefficient: 0.0017 (10) Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4) Absolute configuration: Flack (1983) Flack parameter = 0.00 (2)		Lists of structure factors, anisotropic displacement parameters, H- atom coordinates and complete geometry have been deposited with the IUCr (Reference: TA1099). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. References Flack, H. D. (1983). Acta Cryst. A 39 , 876–881. Johnson, C. K. (1976). ORTEP11. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. University of Cambridge, England. Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.						

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

- White, J. M. (1995). Aust. J. Chem. 48, 1227–1251.
- White, J. M., Green, A. J. & Kuan, Y.-L. (1995). J. Org. Chem. 60, 2734–2738.
- White, J. M. & Robertson, G. B. (1992). J. Org. Chem. 57, 4638-4644.

Acta Cryst. (1996). C52, 3207-3210

Stereochemistry of Chiral Sulfoxides used for the Synthesis of Antitumor Antibiotic Analogues of Sparsomycin

Andrew Hempel,^{*a*} Norman Camerman,^{*a*} John Grierson,^{*b*} Donald Mastropaolo^{*c*} and Arthur Camerman^{*c*}

^aDepartment of Biochemistry, University of Toronto, Medical Sciences Building, Toronto, Canada M5S 1A8, ^bDepartment of Radiology, University of Washington, Seattle, WA 98195, USA, and ^cArdono Research, 737 Belmont Pl. E., Ste. 302, Seattle, WA 98195, USA. E-mail: andrew. hempel@utoronto.ca

(Received 29 February 1996; accepted 24 July 1996)

Abstract

The structures of {[(S)-(4,5-dihydro-2-phenyloxazol-4-yl)methyl]-(S)-sulfinyl}octane, $C_{18}H_{27}NO_2S$, (2), {[(S)-(4,5dihydro-2-phenyloxazol-4-yl)methyl]-(R)-sulfinyl}octane, $C_{18}H_{27}NO_2S$, (3), and 4-{[(S)-(4,5-dihydro-2-phenyloxazol-4-yl)methyl]-(S)-sulfinyl}phenol, $C_{16}H_{15}NO_3S$, (5), have been determined. The known chirality (S) at the C10 atom in all three compounds enabled assignment of the absolute configuration at the S13 atom. The C10 chirality was subsequently confirmed by refinement of the Flack parameter. The absolute configuration at S13 for compounds (2), (3) and (5) is R, S and S, respectively. Comparison with the stereochemistry of sparsomycin enables proper choice of diastereomers for analogue development.

Comment

Sparsomycin, (1), a natural product from bacteria, is a potent inhibitor of protein biosynthesis (Lazaro, San Felix, van den Broek, Ottenheijm & Ballesta, 1991) and has attracted considerable interest as an antibiotic and chemotherapeutic agent (Ottenheijm, van den Broek, Ballesta & Zylicz, 1986). The drug preferentially binds

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved to 'active ribosomes' engaged in polypeptide synthesis on mRNA and blocks the action of peptidyl transferase, a key enzyme which is an integral part of the large ribosomal subunit structure. Valuable information on the structure of this peptidyl transferase centre and of the ribosome as a whole has been obtained from studies using sparsomycin and its analogues.

In connection with our syntheses of ribosome inhibitors based on the structure of sparsomycin, we have prepared a novel pair of optically active alkyl *n*-octyl sulfoxides, (2) and (3), and report on their solid-state structures. Curiously, the diastereomeric octyl sulfoxides (2) and (3) can be separated on silica gel, but the related alkyl aryl sulfoxide diastereomers (4) and (5) could not be separated except by selective and repeated crystallizations. We also report on the solid-state structure of compound (5). We have relied on X-ray crystallography for determining the chirality of these sulfoxide centres, since there are no other general methods for compounds that also contain other chiral centres.

The molecular structures of the three compounds investigated are presented in Figs. 1, 2 and 3. Compound (2) (Fig. 1) contains two independent molecules in the asymmetric unit, both having the same stereochemistry. The *n*-octyl chains in both molecules of compound (2) and in compound (3) (Fig. 2) all adopt fully extended conformations.

Fig. 1. The structure of (2) showing 50% probability displacement ellipsoids (two independent molecules in the asymmetric unit).

Acta Crystallographica Section C ISSN 0108-2701 © 1996